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Cross-strand disulphides in cell
entry proteins: poised to act

Merridee A. Wouters,’* Ken K. Lau,' and Philip J. Hogg?

Summary

Cross-strand disulphides (CSDs) are unusual bonds that
link adjacent strands in the same pB-sheet. Their peculiar-
ity relates to the high potential energy stored in these
bonds, both as torsional energy in the highly strained
disulphide linkage and as deformation energy stored in
the sheet itself. CSDs are relatively rare in protein struc-
tures but are conspicuous by their presence in proteins
that are involved in cell entry. The finding that entry of
botulinum neurotoxin and HIV into mammalian cells
involves cleavage of CSDs suggests that the activity of
other cell entry proteins may likewise involve cleavage of
these bonds. We examine emerging evidence of the
involvement of these unusual disulphides in cell entry
events. BioEssays 26:73-79, 2004.

© 2003 Wiley Periodicals, Inc.

Introduction

Cross-strand disulphides (CSDs) are uncommon covalent
bonds that link cysteine residues in adjacent strands of anti-
parallel B-sheet. The position of most disulphide bonds can be
rationalized in terms of their stabilizing effect on local protein
structure. CSDs are unusual, however, because they occurin
a secondary structure that is already non-covalently linked.("
A clue to the reason for their existence comes from studies of
two proteins involved in cell entry events, botulinum neurotox-
in® and CD4.® It was found that cleavage of the CSD in
these proteins is required for entry of the neurotoxin or HIV,
respectively. This observation led us to explore whether
cleavage of CSDs might be a more general mechanism for
controlling protein function.
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CSDs store potential energy

CSDsare alwaysfoundinthe ‘non-H-bonded’ site of antiparallel
B-sheet," an arrangement where the backbone hydrogen-
bonding groups face away from each other (Fig. 1A). This site
differs from the alternate ‘H-bonded’ site by having a smaller
separation ofthe adjacentC,s (4.5 Acomparedto5.5A) and not
being directly constrained by two hydrogen bonds that link the
backbones of the cross-strand residue pair together. The disul-
phide linkage forms across the two strands roughly perpendi-
cular to the strand direction and parallel to the hydrogen bonds
between the two strands (Fig. 1A). CSDs often join short
regions of the polypeptide chain and are commonly found
bridging a B-hairpin, a structure where the two antiparallel
strands are locally linked to each other by a short turn (Fig. 1B).
Both half-cystines in the disulphide assume a highly stressed
gauche -+ y conformation where the C, and Cg separations are
roughly equal at 4 A. The deformation of the sheet is mainly
apparentas a pucker caused by the strands being drawn closer
together and tilting towards each other to accommodate the
disulphide linkage (Fig. 1C). Typically, C, atoms of non-H-
bonded residue pairs are separated by a distance of 4.5 A,
whereas CSD C,s are separated by roughly 4.0 A. In addition,
the strands usually shear in the direction of their C terminus, as
well as twisting in the usual direction.

CSDs store potential energy, both as torsional energy in the
highly strained disulphide linkage and as deformation energy
in the sheet itself (Fig. 1C). Studies of disulphide bonds in
model proteins have shown that those bonds with high
potential energy are more easily cleaved than disulphide
bonds with lower stored energy.~") The strain of a disulphide-
bond can be estimated from the five dihedral angles.*®
The calculated strain energies only consider the dihedral
angles and do not include other factors such as bond lengths,
bond angles, and van der Waals contacts in calculating
energy. Nevertheless, the findings of Pjura etal.® indicate that
such calculations can give useful semi-quantitative insights
into the amount of strain in a disulphide-bond.

In a survey of release 101 of the PDB (nist.rcsb.org/pdb),
208 CSDs were found in a total of 1620 unique protein struc-
tures that contained disulphides. The dihedral strain energy of
all disulphides was calculated and compared to the energies of
CSDs (Fig. 2). As anticipated, the torsional energy of a CSD
is higher than the average for all disulphides. The average
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Figure 1. Structural features of CSDs. A: CSDs are always located in the non-H-bonded site (solid rectangle) of antiparallel 3-sheet. The
non-H-bonded site alternates with the H-bonded site (dashed rectangle) both along the strands (y-direction) and parallel to the hydrogen
bonds (x-direction), to form regular antiparallel $-sheet. B: CSDs are often found bridging a B-hairpin, a structure where the two antiparallel
strands are locally linked to each other by a short turn. The B-hairpin that is formed by the Cys'22—Cys'2” CSD in influenza B neuraminidase
is shown. The N-terminal strand is blue and the C-terminal strand is red. C: CSDs are highly strained linkages that introduce a pucker in
the B-sheet in which they reside. The strands are drawn closer together and tilt towards each other to accommodate the disulphide linkage.
The CSD in botulinum neurotoxin B is shown. The grey strands are a typical, locally flat f-sheet from CD4 shown for comparison. The green
strand (Cys*®®) is tilted towards the orange strand by ~20° with respect to the CD4 strand, while the orange strand (Cys**°) is tilted towards
the green by ~30° with respect to the corresponding CD4 strand. The figures were drawn using the coordinates from 1b9v and 1epw and
MOLSCRIPT and Raster3D software.
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torsional energy of a disulphide in the dataset of unique
proteins is 15.5 + 10.9 kJ - mol~" (4,920 disulphides in 1620
proteins). CSDs have an average torsional energy of 18.8 +
6.2 kJ - mol~" (208 disulphides in 171 proteins) and represent
8% of disulphide bonds that have torsional energies higher
than 12.5 kJ -mol~". In contrast, they are basically unrepre-
sented at energies lower than 12.5 kJ - mol~" (3 examples).

Further inspection of the data set indicated that CSDs were
present in proteins having some common functions. Con-
spicuously, CSDs are over-represented in molecules involved
in cell entry. 29 CSDs are found in 14 proteins involved in cell
entry (Fig. 3), which equates to an average of 2.1 CSDs per
protein. In contrast, the frequency of a CSD in any disulphide-
containing protein is 0.13. The demonstrated involvement of
CSDs in botulinum neurotoxin and HIV entry will be reviewed
first and then the implied or potential role of CSDs in other cell
entry proteins will be considered.

Involvement of the CSD in clostridial
neurotoxin action

The clostridial neurotoxins, comprising tetanus neurotoxin
and the seven serotypes of botulinum neurotoxin (A—G), bind
specifically to neuronal cells and disrupt neurotransmitter
release by cleaving proteins involved in synaptic vesicle mem-
brane fusion.® Translated as a single chain, the neurotoxins
are subsequently cleaved to form the heavy and light chains.
The two portions of the toxin remain covalently associated
through a disulphide-bond. Structures of botulinum neurotox-
ins A and B have been solved, while only the heavy chain of
tetanus neurotoxin has been determined.

In both botulinum structures, the CSD is the disulphide
bond that joins the two chains; Cys*2°~Cys**® in botulinum
neurotoxin A and Cys*3**—Cys**® in serotype B. Reference to
sequence alignments show that this disulphide is conserved in
all the clostridial neurotoxins.® Cleavage of this disulphide-
bond is required for the endopeptidase activity of botulinum
neurotoxins, a step that is rate limiting during the toxificat-
ion process.® Upon cleavage of the CSD, neurotoxin A
assumes an enzymatically active molten globule conforma-
tion, characterized by the existence of a native-like secondary
structure and fold, but a loss of rigidity in tertiary structure.('®
This conformational rearrangement is apparent in altered UV
spectra and lower thermal stability constants with respect to
the native tertiary structure. These changes make the protein
less likely to crystallize, however, and to date no protein has
been structurally characterized in this state. The CSD of
tetanus toxinis cleaved by reduced thioredoxin and by rat brain
homogenate.'"

Involvement of CSDs in human
immunodeficiency virus (HIV) entry

The HIV envelope glycoprotein (Env) is translated as a single
polypeptide chain (gp160) that is proteolytically cleaved by

host cell subtilisins into two non-covalently associated frag-
ments, the surface glycoprotein subunit (gp120) and the
transmembrane (gp41) subunit that is anchored in the viral
membrane.(? Env is activated by binding to CD4 and chemo-
kine receptor CXCR4 or CCR5 on susceptible cells. gp120
dissociates from gp41, which allows the fusion peptide to be
inserted into the target membrane. The end result is formation
of a six-helix bundled gp41 ectodomain that drives the mem-
brane merger and eventual fusion."® Disulphide cleavage
appears to be an important part of this process, both in CD4
andin gp120. The CSD in CD4® is cleaved on the cell surface
and two of the nine disulphide bonds in gp120'*'® are cleav-
ed during HIV/cell membrane fusion.

The extracellular portion of CD4 consists of four immuno-
globulin-like domains, D1 to D4.("~"® The D1, D2 and D4
domains of CD4 each contain a disulphide-bond. The D1 and
D4 disulphides are conventional cross-sheet immunoglobulin
domain disulphides, while the atypical D2 disulphide is a CSD.
The D2 bond is most likely cleaved by thioredoxin,® whichis a
thiol-disulphide oxidoreductase secreted by CD4™ T cells.!'®
It has been suggested that cleavage of the D2 bond is
important for conformational changes in CD4 required for
fusion of the viral and cell membranes.®®

Comparison of primate immunodeficiency viruses identi-
fied five variable regions (V1-V5) in gp120 sequences.®” The
gp120 structure contains seven disulphides, three of which are
CSDs in at least one of the solved structures.® Binding of
gp120 to CD4 " cells results in protein disulphide isomerase
(PDI)-mediated cleavage of, on average, two of the nine disul-
phide bonds in gp120.('*1) PDI, like thioredoxin, is a thiol-
disulphide oxidoreductase®® that interacts with CD4 both
in solution and on the cell surface." PDI cleavage of gp120
occurs after chemokine receptor binding.'® The conforma-
tional change in gp120 that accompanies cleavage is believed
to facilitate the unmasking of the gp41 fusion peptide and its
insertion into the target cell membrane.'®

The three CSDs in gp120 straddle the variable loops.
Cys'?6—Cys'%® straddles V1/V2, Cys?**~Cys®*' straddles V3,
while Cys®¥®—Cys*'® straddles V4 (Fig. 3). The gp120 mono-
mer forms a bilobal structure with the two halves referred to as
the ‘inner’ and ‘outer’ domains. The V3 and V4 loops and their
resident CSDs are located in the outer domain. The two lobes
are joined by a ‘bridging sheet’ composed of two B-hairpins
donated from distal regions of the polypeptide chain. The
N-terminal B-hairpin of the bridging sheet is straddled by the
Cys'?®—Cys'% CSD on strands 2 and 3 and long range inter-
actions within the primary structure of the molecule are medi-
ated by four hydrogen bonds between strands 2 and 21. CD4
binding increases exposure of epitopes involving residues
in the bridging sheet.®® Considering that V3 is the principal
determinant of chemokine receptor specificity and that cleav-
age of gp120 disulphide bonds ablates chemokine receptor
binding,!'® the Cys?°®~Cys®*' CSD is most likely one of the
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two disulphide bonds reduced by PDI. We think it likely that
either the Cys'26—Cys'% or Cys®¥®—Cys*'® CSD is the other.
The importance of these disulphide cleavage events in HIV
entry is supported by the finding that mono- and di-thiol alkyl-
ating agents, which inactivate thioredoxin and PDI and react
with cleaved CD4 and gp120, inhibit HIV entry and envelope-
mediated cell—cell fusion.®42526) Anti-PDI monoclonal
antibodies also inhibit HIV entry and cell—cell fusion. %:26)

Involvement of CSDs in other bacterial

toxins and viral entry proteins

There are two types of bacterial toxins: those that kill cells by
pore formation and those that kill cells by translocation to the
cytosol of a catalytic subunit that abrogates normal cellular
function. CSDs are commonly found in the translocation type
also known as AB toxins. While all these toxins are not homo-
logous, they share the common feature of having a receptor
binding B subunit that binds to the target cell to enable
translocation of the catalytic A subunit into the cytosol. In most
AB toxins, these two subunits are initially linked by both a
peptide-bond and a disulphide-bond. Separation of the two
subunits is required for the toxin’s enzymic function. To date,

AB toxins of four types have been structurally characterized:
clostridial neurotoxins, diphtheria toxins, AB5 toxins such
as pertussis toxin and anthrax protective antigen. A CSD is
involved in the action of the clostridial neurotoxins (see above)
and may be involved in the action of diphtheria toxins and
pertussis toxin. Unlike the CSD of the clostridial neurotoxins,
which links the A and B subunits, the CSDs of diphtheria
and pertussis toxins are found in their receptor-binding B
subunits.

Viral envelope glycoproteins penetrate host cells by binding
to endogeneous receptors and fusing with the host cell mem-
brane. For some well-characterized viruses, such as influenza
A, HIV and tick-borne encephalitis, both of these functions are
performed by a single viral envelope glycoprotein. Other types
of viruses including most paramyxoviruses (e.g., Newcastle
disease virus) and filamentous Ff bacteriophages achieve this
feat with two interacting envelope glycoproteins, one of which
binds the receptor and another that fuses with the membrane.
CSDs are present in the envelope proteins of both types
of virus. In characterized structures where the functions are
performed by separate glycoproteins, the CSDs are in the
binding glycoprotein.

Bacterial Toxins
!

LAl ]

Partussis toin call-binding component [T BE
bep)

Viral Entry Proteins

HIV-1 gp120 a3
{1g9m} [- £ z

Botulinum m;“mrlnmntwnﬁ 1&_!“!
win 1ﬁm
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Figure 3. Relative positions of the CSDs in
bacterial and viral entry proteins. The grey bars
represent the portion of the polypeptide for

Ff bacteriophage coat protein, gip 1hlﬁ
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Encephafitis virus glycoprotein 1 8
(1svh) H] H H

which there is structure information. The PDB
number is indicated in brackets for each protein.
The CSDs are indicated by bridges, which link
the indicated cysteine residues. Other disulphide
bonds are not shown.
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The spike glycoproteins of orthomyxoviruses (e.g., influ-
enza) and paramyxoviruses (e.g., Newcastle disease virus)
have three functions: to bind to a receptor on the cell surface, to
mediate viral fusion with the cell membrane and to destroy
the receptor. For influenza A and B, the binding and fusion
functions are performed by haemagglutinin, while a separate
protein, neuraminidase, destroys the receptor. In influenza C
virus, all three cell entry functions are mediated by a single
glycoprotein, the hemagglutinin—esterase fusion protein. The
hemagglutinin or fusion proteins of orthomyxoviruses and
paramyxoviruses are translated as a single chain that is pro-
teolytically cleaved to form two chains linked by a single
disulphide-bond, a situation reminiscent of the AB transloca-
tion toxins (see above). The CSD in the orthomyxovirus fusion
proteins is the inter-chain disulphide, similar to the clostridial
neurotoxins.

A summary of the possible involvement of CSDs in the
function of bacterial toxins and viral entry proteins is given in
Table 1. The relative position of the CSDs in the primary
structure and the cysteine residues that they link are indicated
in Fig. 3.

Concluding remarks

A recurring feature of the CSDs in entry proteins is their pre-
sence in stressed regions of B-sheet, often bridging p-hairpins.
Notably, residues in the loop region of the B-hairpin have been
implicated in the mechanism of action of several of the proteins
discussed herein. CSDs are also often associated with potent-
ially stressed regions of the sheet known as B-bulges, where
the sheet departs from the standard hydrogen-bonding pattern
shown in Fig. 1A. These structural features imply that CSDs
form locks on regions of protein structure of high potential
energy. We suggest that cleavage of CSDs in perhaps a
number of the entry proteins releases this stored energy,
which is used for conformational changes that trigger the
action of the protein. The nature of such a conformational
change has been described for a few entry proteins.

The two-chain influenza A hemagglutinin is in a metastable
state until it is exposed to low pH, whereupon the smaller C-
terminal chain spontaneously adopts a new conformation.”
It appears, therefore, that the larger N-terminal chain kinetic-
ally traps the C-terminal chain in a non-native fold. Exposure
to low pH tips the balance in favour of the native fold that is
adopted spontaneously. This scenario is supported by the
observation that the smaller chain adopts the low pH conform-
ation when it is expressed in the absence of the larger chain.
Although the low pH structure is often thought of as the ground
state, further conformational changes are implicated during
fusion of the viral and host membranes. The protein appears to
transit through a series of metastable states before reaching
the ground state.

The CSD in influenza A hemagglutinin may be considered
as a lock on a metastable region of structure and its cleavage

facilitates transition to lower energy states. This notion is sup-
ported by how the CSD is initially formed. Six of the eight
disulphide bonds in the protein appear to form spontaneously,
while the CSD Cys*—Cys*® (Cys**—Cys®'%" in the two-chain
form) and the bond linking Cys®? and Cys®’” receive special
attention.®® Binding of nearby glycans to calnexin protects
Cys* from oxidation until Cys*®® is translocated into the endo-
plasmic reticulum, while soluble calreticulin protects Cys52
until Cys®”” is translocated. These two disulphides are then
formed by the oxidoreductase ERp57, which is recruited by
calnexin and calreticulin.

Probing the involvement of CSDs in the function of cell entry
proteins is possible by manipulating the Cys residues that
comprise the CSD. Thiol alkylating agents such as 5’-dithio-
bis(2-nitrobenzoic acid) or 3-(N-maleimidylpropionyl) biocytin,
which are largely membrane impermeable, could be used to
block the Cys thiols of a cleaved CSD, while thiol-oxidising
agents such as HgCl, may be used to catalyse formation of a
CSD. Cleavage of a CSD may be achieved using the protein
reductants, thioredoxin or PDI. Should one or more of these
reagents perturb membrane fusion of the protein being inves-
tigated, it would suggest that a CSD might be involved in the
process. A particular CSD could be investigated by eliminating
the bond by mutating both Cys to Ser or Ala, or a novel disul-
phide-bond could be engineered into the protein to restrict
conformational changes that are predicted to occur upon
cleavage of the CSD.

Certain proteins, such as hemaglutinnin and the serpins,
undergo dramatic conformational changes during function.
Such conformational changes may be preceded by cleavage
of CSDs in some cases. The preponderance of CSDs in bac-
terial and viral entry proteins and the demonstration of their
cleavage in two of the proteins implies that manipulation of
CSDs may be a key event during breach of the cellmembrane.
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